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The primary objective of this work is to determine computational

techniques for estimating the error present in the solution of 
. 1

time-dependent partial differential equations for both smooth and

nonsmooth problems and in particular for hyperbolic problems with

shocks. Another objective is to study variable step versions of

general multistep methods for ordinary differential equations a4

to implement an efficient algorithm for the solution of stiff

equations. Still another objective involves the study of the -

multi-grid method for solving linear algebraic systems arising

from discrerized elliptic partial differential equations.
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STATUS OF THE RESEARCH EFFORT

The research reported here is in the area of numerical analysis.

There are four parts to this report:

I. Computational error estimates and deferred corrections

for differential and integral equations

II. Roundoff error for variants of Gaussian elimination

III. Multistep methods for ordinary differential equations

IV. Multi-grid methods for elliptic partial differential

equations

A more detailed outline is given by the table of contents, which follows.

The work described in this report falls into three categories:

(i) work that is reported elsewhere, for which we include little more than

an abstract and an outline, (ii) work that will not be reported elsewhere,

for which much more detail is provided, (iii) work that is not yet ready

for publication, for which unpolished, incomplete results are given.
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I. COMPUTATIONAL ERROR ESTIMATES AND DEFERRED CORRECTIONS FOR
OPERATOR EQUATIONS

Digital computer simulations of physical phenomena often involve

the numerical solution of partial differential equations with initial and

boundary conditions. It is clearly important to have an estimate of the

accuracy of the computed solutions. We have identified ten ways to

estimate the error in the numerical solution, often called the global

error. Good theoretical and practical results for estimating error for

smooth problems were obtained by Lindberg (1976) using a generalization

of Fox's deferred difference correction. The idea is to produce another

numerical solution of enhanced accuracy by subtracting out from the

difference equation of the improved solution local error estimates

computed for the original solution. We have since been able to simplify

and strengthen Lindberg's theorems. The result is a theoretical framework

for proving accuracy results for deferred correction. Application of

this theory to ordinary differential equations yields useful theoretical

results. The practical benefit is to offer guidance in the construction

fof local error estimators by identifying those properties that are

important for accurate error estimation. These ideas have been applied to

time-dependent partial differential equations with nonsmooth solutions,

particularly hyperbolic problems with shock discontinuities. For these

problems it would be very difficult to obtain error estimates that can

be theoretically justified; we were content to devise and test schemes

having only limited theoretical support.

An introduction to the idea of deferred correction and our

style of error analysis is given in Skeel (1980, section 1).
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1. Error Estimation and Iterative Improvement for the Numerical Solution
of Operator Equations (Lindberg; Van Rosendale, Skeel)

A technical report with this title was written by Lindberg

(1976). The abstract follows:

A method for estimation of the global discretization error
of solutions of operator equations is presented. Further
an algorithm for iterative improvement of the approximate
solution of such problems is given. The theoretical
foundation for the algorithms are given as a number of
theorems. Several classes of operator equations are
examined and numerical results for both the error estimation
algorithm and the algorithm for iterative improvement are
given for some classes of ordinary and partial differential
equations and integral equations.

The table of contents is as follows:

1. Introduction
2. General Theory

2.1. Preliminaries
2.2. Basic Theorems

3. Approximation of Linear Functionals
4. Applications

4.1. Initial Value Problems for Ordinary Differential Equations
. 4.2. Two-Point Boundary Value Problems for Ordinary Differential

Equations
4.3. Two-Dimensional Elliptic Boundary Value Problems

4.3.1. Problems Nonlinear in u Only
4.3.2. The Minimal Surface Equation

4.4. Parabolic Partial Differential Equations
4.4.1. The Method of Lines with Euler's Method
4.4.2. The Method of Lines with the Backward

Euler Method

4.5. Hyperbolic Partial Differential Equations
4.6. Integral Equations

5. Concluding Remarks

An improved and shorter version of this report (Lindberg (1980)) is to

appear in BIT.
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2. A Theoretical Framework for Proving Accuracy Results for Deferred
Corrections (Skeel; Ortman)

A manuscript with this title has been submitted for publication

by Skeel (1980). The abstract follows:

General techniques are described for proving accuracy
results for deferred correction solutions to differ-
ential equations. These techniques apply also to
computational estimates of the local discretization
error. The proofs avoid the necessity of demonstrat-
ing the existence of asymptotic expansions of the
global error in powers of some meshsize parameter.

The outline is as follows:

1. Introduction
2. Historical Survey

2.1. Difference Correction

2.2. Difference Estimates of the Local Error
2.3. Generalized Difference Correction
2.4. Defect Estimates of the Local Error
2.5 "Cheap" Global Error Estimates

3. Local Error Properties of Numerical Methods
4. An Error Analysis for One Deferred Correction

The experiment referred to in the penultimate sentence of

Section 2.1 of this manuscript was performed in double precision on the

CYBER 175 for a decreasing sequence of stepsizes At - 1, 1/2,..., 1/128

for the problem y' = y, y(O) = 1. The values of the computed solution for

t - 1 were printed out, and they seemed to be converging very much like

(At)4.

The third paragraph of this manuscript mentions three notable

implementations of the deferred correction idea. In addition there is the

subroutine SEPELI developed by John Adams at NCAR (see Swarztrauber and

Sweet (1979)), which has the option of obtaining fourth-order accurate

solutions via deferred corrections applied to a fast separable elliptic PDE

solver of second order accuracy. This kind of situation in which we have

a very efficient low order method is ideal for the application of deferred

corrections.

Ll
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3. The Order of Accuracy for a Deferred Corrections Algorithm (Skeel)

This work will constitute the future paper mentioned in Skeel

(1980, section 4, second paragraph) in which we give an error analysis

for a sequence of iterations for the algorithm considered by Christiansen

and Russell (1979). This is intended to be a realistic example of the

application of the theoretical framework for proving accuracy results,

which because of its length was not included in Skeel (1980).

In Christiansen and Russell (1979) a careful analysis of deferred

corrections that does not involve asymptotic expansions is done for a

realistic algorithm similar to the implementation of Lentini and Pereyra

(1977) of iterated deferred corrections for two-point boundary value

problems. Under weak assumptions they prove that each iteration increases

the order by one, and they give empirical results showing that the first

two iterations increase the order by two. They suggest how this might be

proved but do not follow through because "Such a proof would be quite

tedious." In this paper we sketch a proof of this fact, which we believe

is less tedious than that of Christiansen and Russell (1979) due to the

way in which we break down the proof into smaller sinpZy stated results.

The key idea is the use of judiciously chosen "discrete Sobolev" norms

for measuring the smoothness of the global error and of the local error.

In particular we use special norms like those of Spijker (1971) and

Stummel (1975) for the errors. These norms are chosen so that they admit

both upper and Zower bounds on the norms of the global error thus making

it feasible to determine the exact order of convergence. However, it

must be acknowledged that the algorithm we analyze is a bit simplified and

unrealistic for nonlinear problems in that we assume the exact solution of

nonlinear equations.
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3.1. The numerical method. Assume that the differential operator F

given for an arbitrary function z by
,g(z(0)' z(1))

F(z) := ( - f(x,z(x)), 0 < x <

satisfies the assumptions of Christiansen and Russell (1979) so that in

particular the operator equation F(y) 0 has an isolated solution y.

Consider a family of meshes

0 = x0 < x1 <...< = 1

with h := xj - xJ_ 1 and h := 1/J such that h < Ch uniformly for all

meshes in the given family. (Presumably, the average meshsize h can be

arbitrarily close to zero, for otherwise the theorems that follow have no

content.) We obtain results for three progressively stronger assumptions

on the family of meshes:

(i) "no assumption," meaning that there is no assumption

apart from that already stated,

(ii) "weak assumption," meaning that

J-1

j Z J+l /h - 11 < ch

uniformly for all meshes, which is quite realistic. Skeel

and Jackson (1979) use the term "variation-bounded" to

describe such a family of meshes in connection with the

stability of multistep methods for initial value problems.

(iii) "strong assumption," meaning that

o max hJ+i/h - II : ch
~l<J-1

uniformly for all meshes, which is not so realistic.

The term "locally uniform" is quite descriptive of such

a family of meshes.
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We seek a numerical solution nj = O(1)J, approximating the

theoretical solution on the mesh y(xj) O(1)J. Our discretization

will be an approximation of order 2k to

g(y(xO), y(xj)) = 0

xj
T. f y'(x) - f(x,y(x))dx = 0 , j = l(1)J
hj

With the J-th subinterval [xj I , xj] we associate the set of integers I(j)

consisting of those 2k integers from 0 through J which are nearest j - 1/2.

We approximate the term f(x,y(x)) in the integrand by the polynomial of

degree 2k-i which interpolates f(x,y(x)) on the meshpoints xi, i E 1(j).

Thus centered interpolation is used everywhere except near the boundary.

The resulting equation is

h (y(xj) - y(x. 1 )) - $ j, i f(xiy(xl)) = O(h2k)

i iEI (j)

where $j,i is a function of the relative meshsizes. The numerical solution

n is the solution of the discrete problem

g(no , n? = 0 ,

, h (nj -qjl i-l( ) n a f(xi' Ti) = 0 , j l(1)Jh'J J1 iEI (j) i

which is a system of J+l nonlinear equations whose Jacobian has bandwidth

2k times the dimensionality of the original ODE. Thus the cost of solving

2linear systems involving the Jacobian is proportional to k . This can be

avoided through iterated deferred corrections.

Let C = (C0' .."''I CJ) be an arbitrary element of the discrete

space and define a discrete operator *(C) by

( = g(C, Co )

Sk j (Cj- ~ ) - £ B~ f(x ,  
) ,J=l().

kj iiEI (j)
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For k i this is the trapezoid rule

1 1 f 1 f(xji -

which is the most economical for computation. In iterated deferred

corrections, due to Fox (1947), we write

4m m:- where 0:= O1

thus expressing 0m as the sum of the economical trapezoid rule plus the

correction - *m" Instead of solving 0(n) - (n) = 0, the procedure

is to solve

0 1 0*(n ) = 0

and

4,(k) k-i00 ! - m(n ) 0 ,k =2, 3, ....

It can be shown that the high order corrections are unnecessary for small

k and it is less work to do iterative updating deferred correction:

J1

., ¢(ni ) = 0

00 ¢ k ) - n k k - 1)  0 , k - 2(1)m.

3.2. Stability. We are interested in the norm of the error llk - AyI%

I where Ay - (y(x0 ), Y(xl),..., y(xj)) and the norm is defined by

ij Jj~lti max We can reduce this to the local level because 4 is stable:~o<_.J <J

11~ - 6 < so 0 IC)~ - L
for some SO independent of the mesh. And so

11nk - Ay o 1 So I 10(k) - (Ay)1* 0

The norm for the discrete residual space EnO0 has not yet been specified

but the best choice is the Spijker norm
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1101,,: max I0 + Z hiPil
,o.:j<j inl

where p is an arbitrary element of the discrete residual space. (This norm

also yields a lower bound in the stability definition.) Stability depends

crucially on the solution being an isolated solution (Keller (1976)).

If the analysis of the error is pursued, it turns out that

accuracy improvement depends on the smoothness of the error. For this

purpose we define the following norms for the discrete solution space:

Il : max 1CoI, max Itl P

IlC1 2  max {IoI' I1ll max It'CI )

where

:= (C cJ-l)/(xJ - xJ-1)

and

t2C:= (Cj - tjcl)/(xj xj-2)

Define the following norms for the discrete residual space:

, IIIl :- max {lPol, max Il ,

III,2 :- max {lOl, IP11, 21x IVpjl} ,

L With considerable effort one can establish the following stability results:

(sm)  IIZt - C1IL _<sm ,11W) - vo )11,, m -0, 1, 2.

The case m = 1 is implied by Christiansen and Russell (1979, lemma 1) for

linear problems.

3.3. Local errors. Returning to the norm of the error, we have using the

more general norm
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11 nk - AyI M < Sm j10(nk) - ,&y)llI

T th a o s IIk( - l ) -(Ay)II a n

Thus the accuracy of n depends on the accuracy of kk(n- ) as an estimate

of the local error (Ay). To underscore this point, we write the

algorithm as

1k(I  k-i

0(n k ) k-1), k - 2, 3,...

the idea being that if the right hand side were exactly the local error
k

then nk would be exactly Ay. The error in the local error estimate can

be split into the propagated error arising from the error nk - - Ay and

the local error arising from 0k:

k-i k-i
(n -  (Ay) k -(n(Ay) + ipk(Ay) - O(Ay)

k4 k- ki~ NO [k-nl) _ k A y ) ] _k ( Ay ) .

Each of these terms is analyzed separately; in this subsection we examine

- k(Ay), which is the local error of the formula of order 2k.

With "no assumptions" we have both

(c 0 ) k 1k(Ay)I, < h2 k ck , k  1, 2,...

and

(Ck Ok(Ay)1 < h2k ck , k - 1, 2,...

Il *2
However this is not true for the Eh norm for k > 2 even for uniform mesh

families because the use of uncentered formulas at the two ends causes

abrupt changes in the local error there. With the "strong assumption" one can

show that
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(c 2 )II ('&y>I,*2 <S h 2 c2

Under weaker assumptions this is not true because if the meshsize does

not vary slowly then neither does the local error.

3.4. Contractivity. The other term in our error analysis is

k - l  (Ay)[ . If there is to be an increase in the order of

accuracy, the operator *k needs to be contractive with contractive power

at least O(h). As an example,

h +2h h +2h
. ( 1 1+1 - 2f(xj,J) +f(x

24 h +h +h hj_ +h +h i J+l
j-l j J+l 1j +

We note that at best

2 2j0

so that contractivity is only 0(1). However, if we use the norm for the

discrete solution space E2 involving second order divided differences, then

)- = (h 2 11Z - C112)

This second "bound" is better than the first if C is smooth. We shall

prove contractivity results of two types:

1*k(t)- *k(C)II*m < hLk I - ?11

and
k( - Mkm < h2LkCIL+,

- m,m+l

Note that more contractivity is possible if we are willing to go to a

stronger norm.

The polynomial interpolant used to derive *k and hence *k can be

expressed in Newtonian form in terms of divided differences. One would

find that for 1 < j < J

I,
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2k-1

k 2 " J di if(,( ' ;p(J))

where

2k-i , l j k ,

p(J) j+k-1 , k< j < J-k+1
, J-k+1 < j < J,

and the y depend only on the relative meshsizes.

THEOREM 1. ,ne foolowing contractivity results hold for the Eh

norm on uniform meshes:

(Lk ) k 1~k( - *k (C 1*O < hL L -

L 1 ) *k - *kkO I1.0 < h L01 l -

Proof. We have that

* C i h 2 Za si,£ t2f(x, ' C.)

9=2

where a, = 0 for t < min {i-k+2, J-2k+3} and Z > max {i+k-1, 2k-1}. It

is sufficient to show that

h* k()( j 1 1(1)k-1, J-k+2(1)J

and

h Z k(O)i' J = k(1)J-k+l

i-k

satisfy a Lipschitz condition of the form given in the statement of the

theorem. We have

2k-d
h~k(0) = h2 I Z aJ i [tf (x£, 4£) -f(x£1- , ;£_1

) ]

and
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2  j i+k-1

ink i=k Z-i-k+2

2 J-1 i+k-l
h E E aI+ 1 tf(xX, )i-k-i Z-i-k+2

2J+k-i 2-

h2  E aj I tf(X , C 1 h2  E ck t+l tf(x2' k-

Z-J-k-2 Z-1

Now it is enough to show that h2 *f(xj, C ) satisfies a Lipschitz condition

of the given form. For the first Lipschitz condition this follows readily

from the Lipschitz continuity of f. For the second inequality note that

tf(xj, jC + E - 1f(xj, i)

1

1 0 y (xj i + e %)de.%1}

1 1
f * ,y (xj +J)d.j f fy(,J_l,,jl+OeJl)deO*I' . 0

Remark. This theorem actually holds under the "weak assumption."

It may be possible to further weaken the assumption on meshes for the first

inequality by noting that only ait - 2a i+i,+i + a i+2,+2 need be small

rather than

THEOREM 2. The following contractivity resuZts hoZd for the Fh

nor with "no assumption":

* klQ) k)Il < hLk II -It 11

kE2) I l, < h 11 2 II - 412

Proof. It is sufficient to show that *k( )j satisfies the given

Lipschitz conditions and this we do as in the proof of Theorem 1. 0

Remark. It may be possible to combine a contractivity result for

k with a stability result for * in order to establish a stability result
for f "
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3.5. Order of convergence. We separately consider the results for

"strong assumption," "weak assumption," and "no assumption."

With the "strong assumption" it immediately follows from the

results of sections 2, 3, and 4 that

22 2

ln2 - AyI[ < Sl (h L1 2 Iln - AyIJ2 + h c1 ) ,

Iln 3 - Ay I6O < SO(h 2LO31I I 2 Aj+h6c).

and for k 4, 5, 6,...

k 
2k k ,In -I Ay][ 0 :S SoMhOk JITk1  -AIy 16 + h c0o

so that the order progression is 2, 4, 6, 7, 8, 9 ..... The result

actually proved for this algorithm by Christiansen and Russell is that

the order progression is 2, 4, 5, 6, 7, 8,... although they give

empirical evidence for the stronger result and outline the proof for

this result under the stronger assumption that h fh = 1 + O(h 2).

With the "weak assumption" we have

1 1 2 21On Ayl1 _S Slh c,

So(h 2L2  + h4c2

Iln- Aylo _< 0 in1 - AyII 

and for k - 3, 4, 5, 6,...
kk k-l2k k,

ln- AY6 -- so(hL 0 1
n k-l - AyI 0 + h co)

so that the order progression is 2, 4, 5, 6, 7, 8....

With "no assumption" we have

1 2 1IInI -Ay .< Slh c,

and for k - 2, 3, 4, 5, 6,...
kk k.12k k,i - AyI < S1 (hL i j1nk-l - AyII + h c

so that the order progression is 2, 4, 5, 6, 7,....
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4. Ten Ways to Estimate Global Error (Skeel)

A manuscript with this title is being prepared for publication.

An outline follows:

0. Introduction. We dcscribe and assess global error

estimation techniques.

1. Deferred correction.

2. Linearized deferred correction.

3. Differential correction.

4. Linearized differential correction.

5. Defect correction. Conditions are established sufficient

for the validity of the defect correction idea of

P.E. Zadunaisky, and it is siiown that this approach offers

no theoretical advantage over deferred correction.

6. Richardson extrapolatin.

7. Error-gradient estimation. This recent iVea is due to

Epstein and Hicks (1979).

8. Using two different tolerances.

9. Using two different methods.

10. Using a method with a specially chosen form of error.

This idea of Stetter (1971) has a weakness which has

been described to us by F.T. Krogh.
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5. Nonsmooth Situations (Skeel)

We consider the use of a single deferred correction to obtain an

improved solution and hence an estimate of the global error. Recall that

there are three components to such a computation:

(i) a numerical solution n which approximates the restriction

to a mesh Ay of the theoretical solution to the operator

equation F(y) = 0.

(ii) a discretization 0 of F which is computationally attractive.

(iii) a local error estimator 4 for 0.

A corrected solution r is obtained from 0(f) = (n). The theoretical

justification for this procedure is valid only under certain smoothness

assumptions on the original solution n and on the problem F. Numerical

experiments have demonstrated the power of this technique when the

assumptions are satisfied, but when they are not, the quality of the

estimates can deteriorate, in particular, the order of accuracy predicted

by the theory will not materialize. This section discusses in general

terms what might be done in nonsmooth situations. Application to parabolic

PDEs and to hyperbolic PDEs is the subject of sections 6 and 7.

Of special interest are hyperbolic PDEs with shocks, and for

these only very low orders of accuracy seem possible by any method with

the possible exception of very complicated shock fitting methods. This

indicates that it would be difficult to construct asymptotically correct

estimates for the local error near discontinuities in the

solution. Hence accuracy considerations for error estimation techniques

must go beyond the order of accuracy. For good estimates in smooth

regions one would probably desire an asymptotically correct estimate

as h -) 0. Among all such estimators we would like to select an (inexpensive)

estimator, which is still somewhat accurate when the solution is nonsmooth.
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It is not entirely clear how to measure the error so that

ln - AyI6 is small for accurate solutions, since a slightly displaced

shock gives a large local value of the global error e := n - Ay. It

may be better to use a root-mean-square or mean norm instead of the max

norm for 11'16. Also, it might help to define Ay as average values on

cells rather than point values, as in the "control volume approach"

described by Roache(1975) for deriving finite difference schemes. For

second order schemes the order is the same regardless of whether we

are trying to compute average values or point values, but it does

matter for higher order schemes.

A careful examination of the theoretical basis of the error

estimation technique is done by Skeel (1980) with the aim of identifying

the key assumptions necessary for the success of this technique. In

particular, assumptions involving asymptotic expansions in the gridsize

h were avoided. It was found that the discrepancy T - Ay in the global

error estimate satisfies the error bound

11 - Ayi 0 :S S(hPK cI iq + 1 (Ay) - *(Ay)I1 0 )j where S is the stability constant in

and Khp is the contractivity constant in

(*) 1(0 - i( )IIO A hKII - Cl

Thus there are four factors that affect the accuracy of the global error

estimate. The first factor is the norm of the error lieiq, which is

defined in terms of the first q divided differences of e. It would be

desirable to modify the original numerical solution n before estimating

the local error so as to reduce the norm of the error. This may be

U
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possible if one knows something about the behavior of C, for example that

c alternates in sign. The second factor is the contractivity hPK of the

local error estimator *. Very often * is chosen to be - where is

a more accurate discretization of F. In such cases one should choose

to be close to 4 in some sense. The third factor is the accuracy of the

local error estimator i(Ay) - 4(Ay). The fourth factor is the stability

constant S of the method 0.. In the remainder of this section, we discuss

each of these in more detail.

Accuracy of the original solution. One of the contributions

to the inaccuracy of the local error estimate comes from the original

global error and its first q divided differences. The local error

estimate will not be accurate if the error is not a smooth "function" of

the independent variables. There are potentially numerous reasons for

roughness in the global error:

(i) roundoff error. This would normally be insignificant

for those problems of interest.

(ii) iteration error. This arises from the use of implicit

difference schemes and can be minimized by doing

enough iterations.

(iii) the use of more than one difference scheme to approximate

the differential equation. This situation occurs when

two-level difference schemes are used to calculate

starting values for three-level schemes; it also occurs in

hyperbolic equations when implicit schemes are used to

calculate numerical boundary values for explicit schemes.

(iv) coarseness of the grid. Certain problems such as stiff

differential systems can be accurately solved even though

the grid is too coarse for the asymptotic theory to hold.
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(v) irregularly spaced gridpoints.

(vi) nonsmoothness in the problem iteslf including the boundary.

If something is known about the behavior of the error, it is

possible by smoothing the numerical solution n to reduce the error and

especially the divided differences of the error. For example, in the

case of shock calculations, higher order schemes introduce systematic

oscillatory errors and random choice methods introduce random errors into

the solution. In our operator notation this means the decomposition

* - " X into a smoothing operator X and a simpler local error estimator

$. Experimentation on a simple test problem with 1/4, 1/2, 1/4 smoothing

in space resulted in error reduction near the shock but not away from the

shock. It should be possible to refine such techniques by the use of a

switch triggered, for example, by sign changes in second differences of the

numerical solution. A related approach is used by Lindberg (1976) for

the leap-frog method. There the local error estimate for a gridpoint was

constructed from computed values only at every other gridpoint. Either

of these approaches is applicable to stiff ordinary differential equations

solved by the trapezoidal rule. If less is known about the error behavior,

one can treat the roughness as noise and construct approximations, such as

least-squares approximations, which filter out the noise.

Contractivity of the local error estimator. One basis for

evaluating potential local error estimators is inequality (*). One

determines the weakest differentiability assumptions and the smallest

numerical constant hPK. This can also be done for reduced integer values

of p and/or q. Under weaker smoothness assumptions it is quite acceptable

that the contractivity of * be some fraction of unity rather than O(h).

- - -s -
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It should also be fruitful to study the contractivity for

simple test problems, in particular, the 'constant coefficient linear

problem. This can be used to determine the contractivity of * or better

still the contractivity of i , since the Frechet derivative of the

later operator maps the original local errors into inaccuracies in the

local error estimate. Following is an example of this type of analysis

in a situation where asymptotic analysis in powers of h is inappropriate:

ExapZe. Consider a stiff system of ODEs y' = f(t, y) with

initial conditions. Let $ be the finite difference operator for the

backward Euler method. Define the global errors E := nn - Y(t ) and

the local errors

: 0 = 0, 6n := -(Y(tn) - Y(tn-1 ))/h + f(tn Y(tn))

Consider the local error estimators
A h

A(r)n :=- (f(tn' n) - f(tn-l' nn-l))/h

and
h ( f(1)t

n :=2 (n n d

Then it can be shown that for the test problem y' = Xy + g(t), Re X < 0,

* A (AY+ *A(AY) n ( - hX) n - j + l (6 ) = P
n" nAA T E) AAyn J-1 n

J=l

which is small compared to 6n' since

n-1/2 + (27 )1/4 max I(6j - )6j1 /hl

However,

0 S(Ay +) (Ay) P
n n n 2 n'

which can be very large compared to 6 nn
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Accuracy of the local error estimator. A potential estimator

can also be evaluated by determining the weakest differentiability

assumptions and the smallest numerical constant for a bound on

Ih (Ay) - O(Ay)I, 0 . This can also be done for lower orders of accuracy.

Stability of the method. For global error estimation it may

be worthwhile to consider methods 0 for the "improved" solution which

are different from the original method $. For example, for conservation

laws one might choose a good monotone method for 0 since it may respond

in a more stable fashion to the perturbations 0(n) that are introduced

into the second integration.

a

LI
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6. Parabolic Problems (Skeel; Van Rosendale)

A couple of nonsmooth problems of this type were tested by

Lindberg (1976): the heat equation

ut M U

with nonsmooth initial conditions and Burgers' equation

ut + uu =V u
x xx

with a small value for V. This second problem develops a sharp front

with large spatial derivatives. The local error estimators of Lindberg

E E Ehave the form i E := 0 - 4) where 4E is a higher order discretization of

the operator based on polynomial interpolation. We attempted to improve

his results by using a higher order discretization having a more

compact computational molecule more like that of 4. This would hopefully

yield a more contractive i := 4 -

Statistics were generated for both local and global error

estimates at each meshpoint in space-time. These included not only the

correct error and the inaccuracy of the error estimate but also the

two separate contributions to the inaccuracies: the part inherited from

the error of the original numerical solution and the part introduced by

. .the local error estimator. These two contributions were evaluated by

!.I jsplitting the inaccuracy of the local error estimate O() - 4(Ay) into

iq) - *(Ay) plus - 4(Ay). Perhaps it would have been better to split

the inaccuracy of the global error estimate according to

-Ay= (6- ) + ( - Ay)

where fl solves

ON() - V(Ay)

Thus we could have separately evaluated the centractivity of i given by
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jj - ilVini - Ayll and the relative error of ,, which is in some sense

measured by lIi-AyITMI - AyJ. This information might be meaningful

even if * is only to be used for local error estimation.

Results for our compact local error estimators are better

than for Lindberg's estimators in regions of smoothness but are as bad

at discontinuities.

1 6.1. Heat equation. The differential equation

t xx

was solved with zero boundary conditions and with both smooth initial

conditions

u(x, 0) = sin x , 0 < x < Tr

and nonsmooth initial conditions

u(x, 0) = min {x, r - x} , 0 < x < w.

Analytic solutions are given by Lindberg (1976).

The original numerical solution U was obtained by.FTCS differencing

I n+1/2 1 2 n=0
atU 2 xU j

where U? n u(jh, nk). This is second order in the spatial gridsize

h - 1/J provided that the stability condition k < h 2/2 is satisfied.

This scheme was also used as the basic method 0 for obtaining the

corrected solution.

Lindberg (1976) considers *E :E 0 E E where *E is based on

quadratic interpolation in time and quartic interpolation in space

1 i U6 (6 -)n 0
k Vt t h x 12 x U

with modifications for j 1 1, j = J-1 and n - 1. We also consider the
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operator given by

6 2 Un+1/2 1 62 n+1/2

because it is the method fourth order in h which differs the least from

*. The local error estimator 'E := - E is given for arbitrary V by

k 1 2 n h1 6 4 n
2 k2  t Vj 12 h4  xj

and ' :P - ' is given by

K h 66 n+1/2

12 kh2  tx j

We are interested in how contractive these operators are. Since

they are both linear, it is sufficient to consider lI*E(V)I and ll (V)l

where the norm is the max norm. We obtain the bounds

II*E(v)I I -IvI + Iv[t

and

h2 - 6k h

II,(V)l_ 3hk min 2- I kmv t

-2 2 nwhere Iv[ __ is the maximum of all Jh 6x V and Ivit is the maximum of

all 1k- I 6 V I" One can show that
t j

bound for'P < h -6k <1

bound for ' E -S 2 + 2k 2

assuming that k < h2/2. With even weaker norms we get

iIE(V)Ii.< 6h2 + 4k IlIvIl
3h2 k

and

II4(v)ll < 12h2 12k IlvIl- 3h~k
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and again (1) holds for this last pair of bounds. This suggests that * is
E

more contractive than * . It is worth noting that T becomes identical to

ifk = h2/6 with the result that the error estimates would be zero!

Nonetheless, zero would be a good approximation to the error in an

absolute error sense.

The table that follows compares for the smooth problem the

error estimates at x4 for a uniform grid 0 = x0 < xI <...< x9 = 7r

with k = (5/2r 2)h 2 . The estimated global errors are U - UE and U -

E E Ewhere U solves (U ) = * (U) and U solves *U) = i(U)6 The errors in

the local error estimates E (U) and (U) can be split into two parts:

E (U) - (Au) [E (Au + E) - *E(Au)] - E (Au)

*(U) - *(Au) = [*(Au + c) - *(Au)] - *(Au)

The first part is due to the error E := U - Au in the original solution U,

and the second part is the local error introduced by the more accurate

E E
operators = f and -

error in global error in local error estimatetime globalloa
error estimate = part due to E + new error

for for * E for o

1 -157 0 0 -5083 -10 -10
135 -145 7 -17

2 -304 -15 -1 -4929 -464 -9
-771 307 7 -16

4 -572 -40 -1 -4634 -434 -7
____ ____-723 289 8 -15

8 -1011 -77 -1 -4096 -381 -3
-637 255 10 -13

Note: all values are 106 times actual values.

The next table displays the same information for the nonsmooth

problem:
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error in global error in local error estimate
lieeleoral error estimate eoral part due to E + new error
levl err for for for for 

1 -177 139 139 -5741 4500 4500
12355 -7855 9294 -4793

2 -147 54 110 -745 -1705 133
251 -1956 161 -28

4 -114 51 81 -308 -295 41

_1 -595 300 48 -7

8 -84 47 58 -116 -52 10
-102 50 11 -2

Note: all values are 104 times actual values.

Hence for both problems * was a much more accurate local error

estimator than E although the big local error near the point of

discontinuity was still underestimated by a factor of 4.6. The better

global error estimator was E due to a fortuitous cancellation of errors in

the local error estimates resulting from the use of a special local error

estimate for the first time level. Apparently the two parts of the error

in the local error estimate tend to cancel especially in the case of the

smooth problem. It is not clear whether or not this desirable situation

can be caused to happen more generally. The foregoing experiments were

performed also for h = 7r/19 and h = 7T/39. The qualitative nature of the

results seemed to depend on the time level n rather than the time t.

The previously tabulated calculations were also performed for

the uniform grid 0 = x0 < x <...< xl0 IT with k - (5/272)h2 . Error

estimates are given at x5, which lies right on the discontinuity:

'4
F

_ -



31

error in global error in local error estimate
time global error estimate - part due to c + new error
level error E error E

for for 4) for for,1

1 193 -330 -330 7703 -13218 -13218
-31213 17995 -26542 13324

2 146 -519 -213 -1235 -12344 -90
-29350 17006 -129 40

4 106 -203 -148 -420 -735 -1
-1262 527 8 -9

8 76 -120 -104 -142 -95 0
-161 66 3 -2

Note: all values are 104 times actual values.

We note that the global error estimates are really bad due to the very

poor local error estimate at the initial discontinuity. Otherwise * was

much more accurate than *E.

Clearly a nonuniform mesh would be appropriate for the nonsmooth

problem, and so the grid points

Xj = [(4-(4 2 + 1)(4 + 1

were used with J = 10 and the time increment

km (min xj Xl) 2

The gridpoint density is four times as great at the center as at the ends.

The method * is given by
x2

U~ nrl 2 
- n o2

6, 2 j

where

n+1/2= 1 n+l U n
- U (U -UJ)

and
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n I ( =1 ~ Un -Un )+ i (Un U,))
X j 2 hj+l (+l +j hj j

which is generally only first order in space. The higher order method

is given by

1 - 6 n+1/2 62 Un+i/2 O

(1 + 2 J+l 2 j+ 6i 2l 6x2 j

where

n+1/2 1 n +

and

6  n 1! 1 .(Un U1) + _ (Un Un

6x j 2 j+l i~ j h i i-i

which is generally only third order in space. Hence the local error

estimator 1 := * - * is given by

k 1 662 n+1/2 1 h) 6 n+1/2
-2 hjhj+) t - -(hj+ - hj) T

Numerical results are given below for x5 = 7r/2.

time global error in global error estimate local
level error for i error

2 120 -133 -434

8 82 -59 -135

20 80 -36 -35

30 83 -29 -19

4
Note: all values are 10 times actual values.

There is an improvement compared to the uniform mesh due to the smaller

contribution to the global error from the local error at the discontinuity.



33

6.2. Burgers' equation. Burgers' equation ut + uu - Vu with initial

condition u(O, x) - sin x, 0 < x < Tr, and zero boundary conditions was

solved with an implicit scheme

0 t
n

tn-1

Xj-.1 Xj Xj+l

which is first order in k and second order in h. Two difference operators

were considered as local error estimators:

t
n

*E

t

xj-2 xj- 1  xj xj+i 'j+2

with modifications for j = 1, j = J-l, and n = 1; and

t0o n

0 0 o- t n-1

The difference operator E, which is second order in k and fourth order in

h, was used by Lindberg; and *, which is second order in both k and h, was
chosen because it differed the least from . The following tables compare

the two local error estimates with h - 7r/20 and k - 1/10 for V - 1 and

for V - 1/16. In this problem a front develops and then dissipates. The

sharpness of the front increases as V -) 0. From the table it appears that

E
* is better than 0 except at the first time level where unsymmetric

formulas had to be used. The tables give the maximum absolute value of

each quantity.
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v-1

error in global error in local error estimatetime globalloai eroa error estimate eora = part due to C + new error
for E for er for E  

for

1 107 35 8 1483 510 113
704 199 134 118

5 188 32 20 399 47 95
74 29 139 43

10 195 20 20 211 25 32
1 30 7 45 14

20 143 11 4 73 2 2
___4 2. 1 2

40 39 1 1 10 1 1
_ _ 0 0 1 0

Note: all values are 104 times actual values.

V =1/16

error in global error in local error estimatetee l error estimate = part due to C + new error
level error EerrorEfor 4 for 4 for 4 for

1 45 12 2 478 140 27
183 • 42 49 41

5 184 45 11 398 112 68
179 67 82 62

10 262 53 205 962 132 824
1 462 448 1611 806

20 1839 1039 2478 5179 3620 5529
1508 2112 10946 5417

40 1054 340 931 1104 179 1063
1 1 1 401 580 2188 1125

80 213 15 129 72 26 66
27 2 136 70

4Note: all values are 10 times actual values.

V
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7. Hyperbolic Problems (Skeel; Ortman, Van Rosendale)

Guided by the general theory of section 2 and the ideas of

section 5, various numerical schemes were constructed and tested.

The estimation of global discretization error by deferred

corrections requires two parallel integrations of the problem, the second

integration being corrected by subtracting out local error estimates

obtained from the first integratioa. Thus there are three major components

of any numerical test: the initial value problem, the integrator, and

the local error estimator.

Recently Stetter (1978) has observed that for global error

estimation, the second integration could be performed by the cheapest

available (stable and consistent) method. However, there are economies

associated with re-using the same method, and so it is not clear in

general which approach is more efficient. In all our tests the two

integrations are performed with the same numerical method.

Also, we note that Hackbusch (1977) and authors cited therein

have applied Richardson extrapolation to methods for hyperbolic systems

of first order.

Three ways of constructing the local error estimator * are

outlined in Skeel (1980, section 4). We were attracted to the Fox-Stetter-

Lindberg idea of using 4 := - * where is the basic integrator and $ is

a more accurate discretization. This permits the use in of specialized

techniques for nonlinear hyperbolic problems such as artificial viscosity,

upwind differencing, artificial compression, antidiffusion, and hybridization.

It is worth noting that as a solution operator, * need not be stable in
order for it to be useful for local error estimation. In addition, the

computational cost of "inverting" * is irrelevant since only O(ri) need
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be computed. Hence, certain types of implicitness are computationally

inexpensive.

Three initial value problems with known solutions were tested:

(i) ut + ux = 0 with a periodic square wave solution, (ii) the inviscid

Burgers equation ut + (u 2/2)x = 0 with initial conditions chosen so that

a shock develops, and (iii) the Riemann problem for the system of three

equations for one-dimensional Eulerian gas dynamics as in Sod (1977).

The first method 0 considered was the two-step Lax-Wendroff

scheme. A variable-mesh scheme was desired, but it was shown that there

is no second order extension of Lax-Wendroff to variable meshes. A

reasonably compact two-level fourth order error estimator for Lax-Wendroff

was sought but only third order estimators could be found that were also

economical. Finally, smoothing schemes for Lax-Wendroff solutions were

tested with partial success. The aim was to make the numerical solution

more amenable to global error estimation.

Also tested was Lax-Wendroff with artificial viscosity as in

Sod (1977).

Since most methods have a fractional order of convergence in

the £1 norm when applied to problems with shocks, it was thought worthwhile

to test first order difference schemes. Deferred correction applied to

FTCS (forward time centered space) differencing with a Lax-Wendroff local

error estimator yielded a solution which was better than that obtained by

Lax-Wendroff alone. When Lax's method was teamed up with Lax-Wendroff, the

deferred correction solution was better than the original Lax solution

but not as good as Lax-Wendroff. The problems tested were ut + ux  0

and ut + uux -0.
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A number of techniques for hyperbolic systems of conservation

laws seem to be motivated by considerations appropriate to a single

conservation law. These involve nonsmooth functions of differences such

as absolute value, sign, and maximum. Systematic extension of these

schemes to systems u + f(u)x 
= 0 is possible: one way is to perform a

local transformation which diagonalizes f'(u) at some local value of u

making the system only weakly coupled locally, then to apply the scalar

scheme, and finally to reverse the transformation. These transformations

can be done implicitly. For example, for upwind differencing this might

amount to

1 +1 n 1 nn

(U U n 1 nh - -UI f f(U 1))
h sgn(f'(U.)) -_ (fn 2f(U_) + f(Un
2 h - -- -- i-

where sgn(f'Cu)) is the matrix obtained by diagonalizing f'(u), applying

the sign function individually to each eigenvalue, and reversing the

similarity transformation. This idea is used by Lax and Wendroff (1960)

for artificial viscosity, and they show how to do it given the eigenvalues,

but not the eigenvectors, of f'(u). Usually the eigenvalues of f'(u)

are known, and in any case, there is always the possibility of approximating

sgn(f'(u)) without reducing the order of accuracy. We tested the foregoing

upwind scheme on the Eulerian gas dynamics equations, and it performed much

better than the upwind differencing tested by Sod (1977). This idea may

be useful for artificial compression, antidiffusion, artificial dissipation,

and SHASTA.

Deferred corrections can also be used as a means of obtaining

more accurate solutions. For hyperbolic equations it could be viewed as

a type of hybrid method which combines the desirable error propagation
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properties of a less accurate method with the smaller local errors of

a more accurate method. For example, the Glimm-Chorin random choice

method does an excellent job of resolving shocks, but it is at best

first order accurate. Hence the solution obtained may benefit from

smoothing followed by a deferred correction with some second order

method. Another example is upwind differencing which, because it is

monotone, always converges (Harten, Hyman, and Lax (1976)) to the

physically relevant solution of a scalar PDE. Since it is first order,

it could also benefit from a deferred correction. It can be shown

that if one combines two conservative methods in this way, then the

resulting deferred correction method is conservative.

7.1. Test problems. Three hyperbolic conservation laws were used with

initial conditions chosen so that the analytical solution is known.

The first problem is

-u + -u 0
at ax

with initial condition

u(x, 0) = <.3
i- .3 < x < 1

and periodic boundary condition u(l, t) = u(0, t). The analytic solution

is a periodic square wavetravelling to the right at unit velocity.

The general nonlinear scalar conservation law has the form

u + f(u) =0.

at ax

For initial condition u(x, 0) - g(x) this can be solved via the hodograph

transformation to yield the implicit analytical solution
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u = g(x - f'(u)t)

for u = u(x, t). The solution to the differential equation ceases to

exist at points where u is about to become multiple-valued. But a weak

solution exists having a shock discontinuity originating at such points.

The speed S = S(t) of such a shock satisfies the Rankine-Hugoniot condition

f(u R) - f(u L )
uR -u L

where uL = u(S(t)-, t) and uR u(S(t)+, t). However not all discontinuities

satisfying this condition are realizable from continuous initial conditions.

Imagine the jump discontinuity uR - uL being split into u - uL and

uR - u where u is strictly between uL and uR. In order for these two

shocks not to separate, we must have

f(u) - f(u ) f(u) - f(u)
u L R, u-uL - uR-u

R

This inequality, which must hol4 for all u strictly between uL and uR,

is known as the entropy condition.

12The choice f(u) = - u :orresponds to the inviscid Burgers

equation, whose solution satisfies

u= g(x - ut)

The initial condition u(x, 0) = g(x) can be chosen to give interesting

ii analytic solutions. For example, one can arrange to have two shocks

develcp spontaneously and then later merge into a single shock. We used

the initial condition u(x, 0) = -arctan x and imposed boundary conditions

at x - + 1 obtained from the analytic solution which satisfies

u - -arctan(x- ut) and

0 < u < w/2 for x < 0,

u - 0 for x =0

-1/2 < u < 0 for x > 0.
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For t > 1 there is a stationary shock discontinuity at x = 0.

For a system of M conservation laws

u+ Lf (u) = 0

one might be able to obtain a solution to the Riemann problem, which

has the initial conditions

=uO' x < x0 ,
u(x, O-- ) M x > x0

For this problem we hypothesize a piecewise constant solution with

values 0R i", M separated by M discontinuities at x = x0 + Smt,

m = 1(1)M. The weak form of the PDE reduces to the Rankine-Hugoniot

conditions at the discontinuities:

Sm - - U- ±(u_), m = l(1)M

2 2
This represents M nonlinear algebraic equationr for the M unknowns

UI' U 2 "''' -uM-l' and SI, S2,.. SM . Care must be taken to fix up the

solution at those discontinuities where the entropy condition is not

satisfied.

The equations for the :uierian specification of one dimensional

gas dynamics are

+ Pu +
( +1 u~pcpu 2 +

where p is density, u is velocity, p is pressure, and c is internal

energy per unit mass. We assume a perfect gas for which the equation

of state is4 p - (y - 1)pe.

The specific heat ratio y is chosen to be 7/5,which is its value for

diatomic gases such as air. It is sometimes convenient to use

conservation variables
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where m is momentum and e is energy per unit volume. If the fourth

variable is eliminated by the equation of state, then

m
_f(u) = ( -1)e + .1 (3 - y')m2/ 1g

lyme/o -_ (Y -
l)m3/p2

!2

The analytic solution of the Riemann problem for these equations reduces

to a single nonlinear equation, which can be solved by the Godunov

iteration. At discontinuities where the entropy condition is violated,

one must use a rarefaction wave solution instead. The initial conditions

used are those of Sod (1977):
1

at t = 0 we have 0 =1, u =0, p = 1 for 0< x <- and
I2

=1/8, u = 0, p =1/10 for 1< x< 1

7.2. Two-step Lax-Wendroff method. For the problem ut + f(u)x = 0 this

method consists of a step of Lax's method

k "j+112 - x J+1/2 h x J+1/2

followed by a leapfrog step

1 1 n+1/2 1 n+/2
-6 U +.16 M 0t hx h =

best illustrated schematically by

leap frog

3 _Lax Lx[

For an arbitrary function v the Lax-Wendroff finite difference operator 0

yields
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n1n12 k xn+l/2 2 2
O +1 - (v + f(v)-) (f'(v)(v t + f(v)x)) + O(h + k)

With v - u we get the local error

n+l h2 T+ 3O(Au) h2 '+O(h)
j

where

1 (f'(u)(cu4:= (cutt.- Uxx) 8 u - xx x

and

c := k/h

The global error satisfies
nn 3

Ununh e +0O(h)

where e = e(x, t) solves

et + (F'(u)e)x =-

Only the expansion for O(Av) is needed for developing deferred correction

error estimators.

We managed to obtain fairly close agreement with the numerical

results of Sod (1977) for the Lax-Wendroff solution of the Riemann

problem. For the time increment he chose

k = 0.9 max(IuI + c)h

For the analytic solution the maximum is attained in Region 4 of Figure 3

of Sod. From c = Y/p/-P- and Table II of Sod we get k & 0.411h. The value

of t in Figures 4 through 15 is not given, but it is clear that the shock

position is very close to .75. From equation (15) and Table II the shock

speed can be calculated and we get t/k - 35. For the Lax-Wendroff method

an artificial viscosity term was added. In our test we also ran the

problem without artificial viscosity, and in spite of greater oscillations,

the average (tI norm) error at t - 35k was reduced by 10% for the density,



43

24% for the pressure, 43% for the velocity, and 16% for the internal

energy with similar reductions at earlier time levels. (Note: the

column labelled "e" in Table II should be labelled "c" and the figures

labelled "ENERGY" should be labelled "INTERNAL ENERGY.") This may

reflect a shortcoming of the £ norm,which does not sufficiently penalize
1

oscillations. It has been suggested that the £2 norm may be more

appropriate because convergence results have been obtained for this norm.

For the nonlinear scalar test problem a variable mesh is

certainly appropriate, and for this reason we sought a second order

accurate variable-mesh generalization of the Lax-Wendroff method. In

order to avoid problems near boundaries and to limit computational
n+1/2 Un

costs, it was required that U.+I/2 be a linear combination of
J+1/2

_), U+, and f(U n and that U be a linear combination of
j' J' l' i~l an (Ui 1

Un, f(Un), n n ,.n+1/2,

,(i UJ+_I , f(UJ+ ) and f(uj±/2). The method

U+/2 = x 1 - [(xj+l - xj+i/ 2 ) Uj + (xj+1 / 2 - xj) Un+1

-I(F (U~ n F(U n)
I n k n (UF)-F((F(U-j+1/2)

U n+l nk _ ..( n+1/2, M n-1/2

j U xj+1/2 - xj-1/2 j+1/2 j-1/2

satisfies these restrictions provided that the whole-numbered meshpoints

satisfy

Xj 2 (xj- 1 / 2 +Xj+l/2)

otherwise, there is no second order formula. Given the whole-numbered

meshpoints, it is always possible to solve for the half-numbered meshpoints

but it may not be possible to force them to lie between the appropriate

whole-numbered meshpoints. It would be better to define the half-numbered
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meshpoints to be midway between the whole-numbered meshpoints and to

define new whole-numbered meshpoints to be midway between the half-

numbered meshpoints.

It is well known that without enough artificial viscosity

Lax-Wendroff produces oscillations next to a shock. For a bounded

stationary numerical solution to ut + f(u)x = 0 where f(u) is strictly
x

convex or concave one can show that to a first approximation the error

decreases geometrically with alternating sign as one moves away from

the stationary shock. In section 5 we indicated that errors can be

better estimated if they are smooth. A numerical experiment was

performed for the Lax-Wendroff method without artificial viscosity

applied to the inviscid Burgers equation with h = 0.1 and k f 0.05.

The table that follows contains values for

n
error inU ,

1n 1 n l n
error in UJ- +- Uj + UJ+

I" n-1/2 + Un-1/2 + In+1/2 + i/2
error in w (UIiJ1/2 + U 4 1/2  j-1/2 J+1/2)

The , 1 smoothing is exact for linear polynomials and removes

alternating errors of constant magnitude. The second smoothing is

suggested by the simple analysis mentioned previously. If we look at

the errors in the worst case, it is clear that the second smoothing is

better than the first smoothing which in turn is better than not

smoothing at all. Similar results were obtained for h 0.05 and k - 0.025.

J1
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X 0.1 0.2 0.4 0.8

.0134 .0039 -.0017 -.0003
0.70 .0320 .0217 .0043 .0012

.0303 .0207 .0046 .0012

.0228 -.0067 -.0027 -.0003
0.85 .0742 .0197 .0018 .0009

.0701 .0195 .0022 .0010

.0008 -.0174 -.0026 -.0002
0.95 .0995 .0052 .0011 .0008

.0927 .0078 .0013 .0008

-.0301 -.0194 -.0024 -.0002
1.00 .1033 -.0055 .0010 .0007

.0948 -.0001 .0011 .0008

-.0761 -.0163 -.0024 -.0002
1.05 .0997 -.0173 .0011 .0007

.0892 -.0077 .0010 .0007

-.2006 .0097 -.0025 -.0002
1.15 .0763 -.0387 .0006 .0006

.0604 -.0164 .0007 .0006

-.3692 .0759 -.0007 -.0001
1.30 .0454 -.0541 -.0024 .0005

.0166 -.0083 -.0005 .0005

In the remainder of this subsection we consider local error

estimators ' f ' - ' for the Lax-Wendroff method 0. We begin by

restricting ourselves to operators ' involving only two time-levels n
I n Un+12 _n+lfo

and n+l. Freely available are values of f at U/2 and u for

any J. The order of $ cannot exceed the order of $ in time,which

can be determined by sending h - 0. Thus we can begin our search for

by considering discrete-time continuous-space operators, which are

little more than ODE methods for IVPs. The Lax-Wendroff method becomes
Un+l = Un + k F(Un + F(un))

where F denotes the operator -f(*)x and Un(x). With the values ofF t~ n+k n un+l

at Un , Un + F(Un), and U it is not possible to construct a

third order implicit Runge-Kutta method *. If we permit one additional
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evaluation of F, third order and even fourth order methods * can be found.
However, it is not possible to simultaneously satisfy the accuracy condition

(Au) = O(k )

and the contractivity condition

(Av) = O(Av) + O(k 2 )

for arbitrary functions v, cf. Skeel (1980, p. 35). This rules out the

possibility of a fourth order local error estimator *. For example,

given by

un+l + 1 F(Un )  2k F(Un. 1 Un+ + .F(Un )  F(Un+))
6 3 '2 2 8 8

is fourth order, but

(Av) n+l . (V - F(v))n+1/2 + O(k
2

differs so much from

AV) =(1 +~ -!EF'(v))(v - F(v + O(k2 )
(vn+l ki + v)) (vt

that i = - * yields only a third order error estimate. A reasonably

compact extension of this operator to discrete time and discrete space

is given by the fourth order scheme
1 6t(1 +2 _ 2 .n+1/2 1 2 1 n+1/2)

k x)t 12 x J + h X(3 x + t) f(U+ ) 0

where

n+l/2 1I 62)n+1/2 k 1 6) n+l1/2JU / "= upt( 1 - 8 )xUj~ + 8 S tx(1 -- S)f(
J+1/2 tx 8 x J+1/2 8 t x 24 x J+1/2)

If two additional evaluations of f are permitted, one can

obtain a fourth order estimate by using a scheme of Abarbanel, Gottlieb,

and Turkel described by Morton (1976), which generalizes the classical

Runge-Kutta formula to ut + f(u)x = 0:

. . .. . . . . .
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J+ - 6 f(~ )+
1/2 x j+1/211 0 2j+1/2

Un1/2 = (1 - I62)Un _ 6 f(Un+1/2)
j 8 xj 2h x j

n+l _ 2 )Un _ n+l/ 2)

i +1/2 = "x(1 - 8 x j+l/2 h x[f( Uj+1/2

1 62 n+8 x f(J+1/2)

un+l = U 6 [_If(U1 +n) + 62 n+1/2J hU (P + I x  f (U
j j h x L6~~ 3 x 4 x j

+ 1 P(1- 62) f(U n)] 8

We compared this method to Lax-Wendroff for the gas dynamics problem

without artificial viscosity. The average error for the fourth order

method at t = 35k was greater by 8% for the density, 20% for the pressure,

64% for the velocity, and 14% for the internal energy. Also it produced

a 54% overshoot in the velocity compared to 33% for Lax-Wendroff.

If one is willing to use a three-level operator c, then one can

avoid additional evaluations of f by using

1 (1+ 62)un+l 1 2 f(Un+l) 0
k tt +6 x j h x x 6 t f

The prospects of obtaining good error estimates with these

operators $ did not seem very good, and so we turned our attention to

estimating errors of first order methods.

7.3. Forward-time centered-space differencing. This method is known to

be unstable for the linear model problem, but it was accidentally tested

due to erroneous programming of Lax's method. The linear test problem

was solved with h - 1/10 and k = 1/60, and a deferred correction solution

was computed using Lax-Wendroff. Below we have the

error in the FTCS solution

error estimate from deferred correction
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for all the spatial meshpoints at t - 30k:

.30 -.25 -.69 .00 1.06 .00 .13 -.87 .19 .12

.31 -.11 -.46 -.08 .47 -.08 .44 -.47 .09 -.08

Out of interest we also computed the Lax-Wendroff solution, and below we

have the

error in deferred correction solution

error in Lax-Wendroff solution

.00 -.14 -.22 .08 .59 .08 -.31 -.40 .11 .21

.12 -.16 -.34 .07 .74 -.05 -.13 -.60 .20 .15

In sum, deferred correction performed well in this instance.

7.4. Lax's method. This is a highly dissipative first order scheme

given by

n 1 I n n k 6f(U)U 7(J -1 + +1)  h - xx

For the linear test problem with h = 1/10 and k = 1/60 we tried for

both Lax-Wendroff and Lax-Wendroff with diffusive and antidiffusive

fluxes as described by Sod (1977). In both cases the results were

disastrous probably due to the fact that the numerical, solution separates

into two uncoupled solutions, one with J+n even and the other with J+n

odd. Lindberg (1976) encountered the same problem with the leapfrog

scheme. Out of interest we also computed solutions directly with each

of the * schemes and the average error was 17% less with diffusive and
antidiffusive fluxes.

We repeated the experiment with leapfrog for * and
with k - 1/50. The deferred correction solution was nearly the same

as the Lax solution, and thus was useless for global error estimation.
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In order to avoid separated solutions we considered instead

n+1/2a two-step Lax scheme in which we first compute UJ112 using the Lax

method and then compute U from these two values again using the Lax

method. With k - 1/60 and = Lax-Wendroff we computed a deferred

correction solution. Below we have the

error in the Lax solution

error estimate from deferred correction

for all the meshpoints at t = 20k:

.23 .26 .30 .35 -.63 -.63 .34 .30 .25 .23

.14 .07 -.02 -.12 -.15 -.14 -.07 .02 .12 .15

These are not very good results. The same combination for and d was

also tested on Burgers' equation with h f 1/10 and k = 1/50. The results

were much better. Below we give the

time level

average error in Lax solution

average error estimate from deferred correction

1 3 7 15 30

,1 .0014 .0041 .0099 .0233 .0572

* .0013 .0039 .0090 .0194 .0417

We also compared the deferred correction solution to the Lax-Wendroff

solution and found that by the 30th time level-the average error of the

latter was smaller by a factor of 14 but that spurious oscillations were

less pronounced for the former. The deferred correction error was

smaller than the Lax error by a factor of 4.

7.5. Upwind differencing. For Burgers' equation we tested the

conservative upwind scheme

L
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1.n+l _u) + 1 n n 0
k uj j h (gj+l2 gj-12 0

where (omitting n)

1 1 1 V1 1
gJ+l2 2f(uj+l) +2 f(uj --7sgn(f' uj+ 1 +. uj ;(f(uj+ jI

n

If f'(u) is positive for u close to uj, this has the effect of defining

n+1 n nU in terms of u and u which is desirable because the characteristicni uxj inj terms oIuf 1

passing through (xj, tn+l).would pass between (X_, tn) and (xj, tn). If

f'(u) is negative, then u -  is given in terms of un and uj+ . With

h - 1/10, k = 1/50, and 4 = Lax-Wendroff we computed a. deferred

correction solution. Below we give the

time level

average error in upwind solution

average error estimate from deferred correction

1 3 7 15 30 35

.0003 .0010 .0025 .0054 .0106 .0112

.0004 .0011 .0025 .0053 .0089 .0092

Out of interest we also computed the Lax-Wendroff solution, and below

we have the

time level

average error in deferred correction solution

average error in Lax-Wendroff solution

1 3 7 15 30 35

.00002 .00007 .00017 .00051 .00238 .00335

.00002 .00007 .00017 .00046 .00164 .00246

For the gas dynamics equation Roache (1975, p. 237) defines

upwind differencing by

....
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1 - .kgn n4k n ss+l n

where G (pu, Pu2 , u(e+p))T, S = (0, p, 0)T and sgn = sgn(u n). (The

equations given by Sod (1977, p. 30) appear to be erroneous.) The

numerical results obtained by Sod were not good. There was a nonphysical

shock where there should have been an expansion wave. Our results were

somewhat similar except that there were also oscillations present. The

stability condition a < 1 given by Sod differs from the very stringent

condition given by Roache. This latter condition is violated in the

experiments.

Because of the failure of this upwind differencing scheme for

the system of three hyperbolic equations, we tried to extend the scalar

scheme used for Burgers' equation to a system of conservation laws. A

systematic way of doing this was discussed in the introduction to this

section. For upwind differencing it involves using sgn(f'(u)) where if

f'(u) = Q diag(X1, X2 "...X AM)Q- , then sgn(f'(u)) = Q diag(sgn(Xl),

sgn( 2),.. sgn(XM))Q- 1 , which is independent of Q. For the gas

' dynamics equations it is most convenient to use the variables p, u, and

c - v(y(y-I)e, and after substitution into f'(u) we have

0 1 0

f'(u) = (3-y)u2  (3-y)u Y-1- ' 2
uc2  (2y)u 2 2

uc 2yu -+ (-Yu
Y-1 2 y-1 2

" Q diag(u, u+c, u-c)Q
-1

where
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1 1 1

SQ u u+c u-c

2 2 2 2 2
u + uc + +___u c

and

2 2
- 2 u
y-i 2

2-1 Y - 1_2 u u c u + c _
Q -- 2 4 2 (y-1) -2 2 (Y-1) 2

2 uc u c 1

S2 (Y-1) 2 2(y-1) 2

The following may be useful in organizing the computation:

uQ 12)

and

f(u) = f'(u)u

Remark. The nonconservative upwind differencing given by

Roache would be in line with the above approach if we had used the

splitting f= + S where G = - (Pu, Pu 2 , pu 3) as long as lul < c.

The matrix upwind differencing scheme described in the

paragraph before the remark was tested on the Riemann problem, and it

produced a very nice solution. With 4 f Lax-Wendroff (without

artificial viscosity) we computed a deferred correction solution.

Compared to the original matrix upwind solution, the deferred correction

solution had average errors at t - 35k which were worse by more than a

factor of 2 for all variables. In addition a spurious rarefaction shock

and compression shock appeared between the rarefaction expansion and

the contact discontinuity.
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A compact second order but implicit scheme is the box scheme

1 n+1/2 1 fUn+i/2
6 11 U. )-= 0

k tx j+1/2 h x t j+1/2
_ n+l un+l

Whether this should be used to determine Uj+ from U. or vice versa

depends on the direction of the characteristics. A conservative upwind

box scheme is given by

n+l =n k n+/2
j UUj = j h x g9

where

n+1/2 h .n+1/2 +n+1/2
gJ+4/2 = t x j+1/2 t x j+1/2

1 n+1/2 h n+i/2
-5 , Uj+1/2) [k 6tlx uj+1/2

+ P 6 f(U n+1/
2 ,

t x j+1/2

4 If we were to use this as a solution method, one could apply this

iteratively beginning with Un+l = Un for all j. Doing one iteration isIteatvey egnnngwih j 3

equivalent to our first order upwind scheme, and doing two iterations

yields second order accuracy. This scheme extends to a system as we

have described. We tested this scheme as a solution method for the

Riemann problem and found that with two iterations per time level the

average error in the solution variables was comparable to that of the

first order upwind differencing. With three iterations per time level

the error was decidedly worse.

A deferred correction solution was computed from the upwind

solution of the Riemann problem using - upwind box with 2 iterations.

(We discovered that 4(U) would remain unchanged if we had instead used

- implicit upwind box.) Below we have given for three different time

levels the
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average errors in matrix upwind solution

average error estimates from deferred correction

time level P p u

.0052 .0059 .0107 .0175

.0024 .0032 .0082 .0127

15 .0088 .0082 .0152 .0294
.0049 .0052 .0113 .0193

35 .0125 .0108 .0200 .0440
.0075 .0071 .0139 .0269

We also computed the solution in two other ways, and below we have the

average errors at various time levels for

deferred correction with f upwind box with 2 iterations

deferred correction with 4 f upwind box with 3 iterations

Lax-Wendroff (without artificial viscosity)

time level P p u C

.0043 .0044 .0087 .0118
5 .0040 .0040 .0084 .0108

.0064 .0069 .0150 .0181

.0056 .0052 .0105 .0192
15 .0051 .0046 .0093 .0174

.0079 .0071 .0156 .0242

, .0073 .0062 .0148 .0314
35 .0070 .0059 .0143 .0299

.0084 .0064 .0127 .0279
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II. GAUSSIAN ELIMINATION AND NUMERICAL INSTABILITY

The solution of linear systems of equations is basic to the

numerical solution of many problems, and yet this subproblem has not

been treated in an entirely satisfactory way. Stewart (1973) states that

"In spite of intense theoretical investigation, there is no satisfactory

algorithm for scaling a general matrix." A theoretical solution to the

scaling problem was discovered by Skeel (1979). This was one of the

results of a study of the implications of a stability concept which is

more appropriate for sparse systems. This investigation was stimulated

by a report of Gear (1975).

'I

.1. .. .
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1. Scaling for Numerical Stability in Gaussian Elimination (Skeel; Ortman)

A paper with this title was authored by Skeel (1979). The

abstract follows:

Roundoff error in the solution of linear algebraic
systems is studied using a more realistic notion
of what it means to perturb a problem, namely, that
each datum is subject to a relatively small change.
This is particularly appropriate for sparse linear
systems. The condition number is determined for
this approach. The effect of scaling on the stability
of Gaussian elimination is studied, and it is
discovered that the proper way to scale a system
depends on the right-hand side. However, if only the
norm of the error is of concern, then there is a good
way to scale that does not depend on the right-hand side.

The table of contents is as follows:

1. Introduction
2. Condition of Linear Systems
3. Stability of Algorithms for Linear Systems
4. Gaussian Elimination with Column Pivoting

4.1. Scaling for Numerical Stability
4.2. Scaling for Accuracy

5. Gaussian Elimination with Row Pivoting
5.1. Scaling for Numerical Stability
5.2. Scaling for Accuracy

6. Practical Implications
Appendix A. Error Bounds for Column Pivoting
Appendix B. Error Bounds for Row Pivoting

Measurements of certain quantities introduced in this paper were

made for the LINPACK SGEFA test problems. Unfortunately for our purposes

these problems were not representative of those likely to occur in

practice, but rather there were a number of unusual problems designed

to test the logic of SGEFA. For all but one of the problems the backward

error

n :- max lb -

was less than the unit roundoff error u even though the ill scaling ratio
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a(A, x) :-ma JA x
R min JAI lxI

was as high as 1.6 1029. For problem 7 the backward error was 5 units

of roundoff error and the ill-scaling ratio was 3.0 10 7.
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2. Iterative Improvement Implies Numerical Stability for Gaussian
Elimination (Skeel)

A paper with this title was authored by Skeel (1980). The

abstract follows:

Because of scaling problems, Gaussian elimination with
pivoting is not always as accurate as one might reasonably
expect. It is shown that even a single iteration of
iterative refinement in single precision is enough to
make Gaussian elimination stable in a very strong sense.
Also, it is shown that without iterative refinement row
pivoting is inferior to column pivoting in situations
where the norm of the residual is important.

The table of contents is

1. Introduction
2. Numerical Stability
3. Gaussian Elimination with Column Pivoting
4. Error Bounds
5. Backward Error Bounds
6. Gaussian Elimination with Row Pivoting

.4

. ... . .I
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3. Effect of Equilibration on Residual Size for Partial Pivoting (Skeel)

A paper with this title was authored by Skeel (198x). The

abstract follows:

It is shown that column pivoting with row equilibration
satisfies the same type of error bound as does row
pivoting without scaling and that row pivoting with
column equilibration satisfies the same type of bound as
does column pivoting without scaling. An interesting
consequence for row pivoting is that column equilibration
is sufficient to ensure that the norm of the residual is
reasonably small.

The table of contents is

1. Introduction
2. Main Results
3. Proofs of Results

I_ _
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III. NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

Systems of ODEs occur naturally in many applications and also

arise from the spatial discretization of time-dependent partial

differential equations. The most effective numerical methods for solving

initial value problems in ordinary differential equations have been

multistep methods. Work in this area is reported here.
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1. Equivalent Forms of Multistep Formulas (Skeel)

The Adams-Bashforth-Moulton and the backward differentiation

formulas are very popular. Improved stability properties are possible

with other formulas, but they are not used for several reasons. One of

the difficulties concerns storage requirements. It is shown in Skeel (1979)

how to formulate the corrector formula and how to select a predictor so

that any multistep method can be implemented as cheaply as the two

popular ones. The abstract of this paper follows:

For uniform meshes it is shown that any linear k-step
formula can be formulated so that only k values need to be

saved between steps. By saving additional m values it is
possible to construct local polynomial approximations of
degree k + m - 1, which can be used as predictor formulas.
Different polynomial bases lead to different equivalent
forms of multistep formulas. In particular, local monomial

bases yield Nordsieck formulas. An explicit one-to-one
correspondence is established between Nordsieck formulas
and k-step formulas of order at least k, and a strong
equivalence result is proved for all but certain
pathological cases. Equivalence is also shown for P(EC)*
formulas but not for P(EC)*E formulas.

The table of contents is as follows:f
1. Introduction
2. Minimum Storage for Multistep Formulas
3. Construction of Linear Nordsieck Formulas
4. The Correspondence Between Multistep and Nordsieck Formulas
5. Equivalence of Linear Nordsieck Formulas-to Linear

Multistep Formulas
6. Equivalence of Predictor-Corrector Formulas
7. Applications
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2. The Stability of Variable-Step Nordsieck Methods (Skeel and Jackson)

Work on the stability of interpolatory step changing has been

prepared for publication by Skeel and Jackson (198x). The abstract

follows:

Conditions are given for the stability of the Nordsieck
formulation of Adams and backward differentiation methods.
It is shown that if the stepsize selection function is
variation-bounded, then these methods are stable. It is
proven that for each method there exist constants a, b,
c satisfying a < b < 1 < c such that if the stepsize ratio
h +l/h satisfies 0 < h /h < a or if b < h < c
then tie method is stab.T Por k-value metholwi~h k < 8,
tables are given for the values a, b, and c.. If the
stepsize is kept constant for one or more steps, then
methods are more stable in the sense that the intervals
defined by a, b, and c are larger. Tables and graphs are
given which show how the stability of a method changes as
the stepsize is changed less often.

The table of contents is as follows:

1. Introduction
2. General Stability Considerations and Theoretical Framework
3. Stability of Adams-Bashforth-Moulton Methods
4. Stability of Backward-Differentiation Methods
5. Conclusion

,'

If
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3. Blended Linear Multistep Methods (Skeel; Dahlquist-Downs, Vu)

At present the most popular codes for stiff systems of ODEs

are based on the backward differentiation formulas. One promising

alternative is to use the "blended" multistep formulas (Skeel and Kong

(1977)) which attempt to combine the best features of the Adams and the

backward differentiation formulas. By definition every autonomous

stiff system must have at least one "component" which is nonstiff and

the Adams formulas are very good for such equations. There are

theoretical reasons for believing that the blended methods are both

effective and computationally inexpensive. Limited empirical evidence

suggests that the blended formulas may be as good as the backward

differentiation formulas for stiff problems, better for nonstiff

problems, and much better for stiff oscillatory problems. We have been

working on implementing these methods by making modifications to state-

of-the-art computer codes for stiff ODEs.

In 1978 from the University of Toronto we acquired STIFF DETEST,

which is a testing program for stiff ODE integrators. We attempted to

execute the program on an INTERDATA minicomputer, but the object code

was too long, and so we wrote our own testing program.' An improved

version of STIFF DETEST was acquired in 1979, and we have successfully

executed it in five and a half hours on a departmental PRIME computer.

It seems that the execution time is much too great, and we are looking

into this problem.

The blended formulas had been implemented in a stru.:ured

version of new DIFSUB, which has been distributed to several researchers.

We compared the efficiency of this to that of GEAR, Rev. 3 of Hindmarsh

(1974) on several test problems. Testing was performed as described by

SV 1 and Kong (1977) except that we used the CYBER 175 and hmn was

se- to 4utf, where u is the unit roundoff error 2-4 7

a
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max func LU accurate ti
order ev backsolves decomps digits

Numerical Results for Problem 1

GEAR

0- 30-4 4 51 110 76 11 2.9 2.7
10 4 69 147 104 14 3.6 3.1

blended new DIFSUB

3 4 33 98 134 10 3.1 2.6
10 7 65 .158 236 13 3.8 5.5

Numerical Results for Problem 2

GEAR

10-4 4 96 211 130 20 2.2 5.2
1074 5 146 283 190 23 3.4 8.9

blended new DIFSUB

10-3 4 65 237 272 25 2.7 7.2
10-3 6 99 283 396 21 3.8 10.0

Numerical Results for Problem 3

GEAR

10- 3  (4) (1001) (1385) (1060) (54) (1.5) (59.0)
"too much work"; integration stopped at t = 8.1

blended new DIFSUB

1-210 5 139 382 570 16 2.4 19.0
10-3 7 210 520 822 18 3.4 28.0

Numerical Results for Problem 4

GEAR

1043 3 111 257 164 23 1.8 6.4
10-4 5 174 358 233 31 3.0 11.0

blended new DIFSUB

10-2 (5) (311) (1376) (1782) (121) (-1.2) (44.0)
"h too large"; integration stopped at t f 956min

10 6 166 503 716 36 2.5 17.0

Numerical Results for Problem 5

GEAR

10-4 5 67 154 129 6 0.1 5.0
10- 4  4 107 240 207 8 0.7 7.2

blended new DIFSUB

10-2 6 71 311 380 30 1.6 10.0
1073 8 79 310 394 28 2.9 12.0

F "
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We had planned to implement the blended formulas in GEAR. We

made changes to GEAR so as to avoid fixed dimension arrays and local

storage. Improvements were made to the calling sequence incorporating

some ideas from the user interface standard of Hindmarsh (1978). We

also added the initial stepsize selection algorithm of Shampine and

Stetter in the source code of RKSW, which is available as a microfiche

supplement to Shampine and Wisniewski (1978). We abandoned this effort

when Hindmarsh's new code LSODE became available. This code already

has the desirable changes, and we are putting the blended formulas into it.

A catalog of better FORTRAN codes for IVPs has been compiled.

It has been included in the "Working Papers of the SIGNUM Meeting on

Numerical ODEs" and in the June 1979 issue of the SIGNUM Newsletter.

A device has been developed for improving the convergence of

the corrector iteration in cases where coefficient in the decomposed

matrix is out of date. Suppose we want to solve

hp' + A - hf(t, p + 8A) = 0

for A given a triangular factorization of I - r-l hJ where J z f and

*r is the ratio of the current value of h8 to an old value of ha. A

* generalization of the usual correction iteration is given by

A A(m+l) W A (m) - m [  - r-l h0J]-i residual(A(m)

where we have introduced the relaxation factor w instead of using a factorm

of unity. For the test equation f(t, y) = Xy + g(t) with J = X the

iteration error C := A - A satisfies

= (1).M [r - ]-l [r(l - wM)  - (1 -w r) l (m)

where ,j :- OhA. If we do not know the number of iterations beforehand,

we could try to optimize the error reduction for each iteration separately
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in which case w is the same value w for each iteration. (If there is

at least two iterations, we would optimize wI and w2 together and then

( 3 and then w4, etc. One might also require 100% error reduction for

-0.) If we restrict X so that Re X < 0 then Re P < 0 for the

methods of interest. The convergence factor is analytic for Re V < 0,

and so by the maximum modulus theorem the maximum value of the

convergence factor for all Re h A 0 is given by

sup Ir(l - w) - (1 - r)ivl/lr - iv•

(It may be more appropriate to compute the maximum over all h in the

intersection of the left half plane with the absolute stability region

of the formula.) The square of the worst case convergence factor is

max (r 2 (l - )2 + (1 - wr) 2v2)/(r 2 + v2

v

Differentiation with respect to v yields extrema at v 2  0 and
2  . .Therefore the worst case convergence factor is

max (1l -w, 1- rwil

for which

minimum 1- at W 2
r + r + 1

This is smaller by a factor of 1/(r + 1) than the convergence factor for

w -=1. Experiments were performed with LSODE for problems 1, 2, and 3, but

the results were inconclusive. This device was discovered independently

by Chipman (1979).

The Nordsieck implementation of the blended formulas obscures

the identity of the predictor formulas that are used, and interest has

been expressed in this question. Using the ideas of Skeel (1980, section 2,

paragraphs 3, 4, 5),we determined predictor formulas for the k-step

blended formulas for k - 1, 2, 3. The predictor for k - 1 is the Euler
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formula. For k -2 it is

- n + Y- n-1 - 2 - -2

+ 6yhJ{- y Y + n-2 + hy

and for k = 3 it is

2 3 hy 4 h +5 -I h

-Yn + Yn-I 2 -3 hY;-2 12 n-3
r231

+ ~h Ly -1hy' + -L I

30yJ{ -n 5 n-1 1-0 Yn-2 - 3 'n-3

26 13 + hn}
+ T5 hY_-1 5 h- +h-Ln2

15 -i 15 n-2 15 n-3

+ 64(yhJ)2{- 1 + n + hy' 1 0
3 n -2 n-l n-2 Yn-3 n-

* -
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4. Equivalent Forms of Variable Step Multistep Formulas (Skeel; Vu)

A manuscript with this title is being prepared for publication.

Widely available codes such as A. C. Hindmarsh's LSODE use Nordsieck's

interpolatory technique to vary the stepsize. It is often stated that

this technique does not yield truly variable step formulas. However,

we have shown that this is not true in the sense that there exists a

formula depending only on the meshpoints t, nt ... t n-k which relates

the computed values yn" Yn-l"''' Yn-k d the derivatives y n -

nkandn ---

This result may be useful in improving the estimation of local

errors in codes that use the interpolatory technique. Other codes,

notably EPISODE, are based on "natural" variable step Adams and backward

differentiation formulas. The implementation uses the scaled derivatives

of the "modifier polynomials" associated with these formulas. We were

interested in the result of "blending" these two modifier polynomials,

for example, the AMF(3 ) modifier polynomial of degree 2 at t plusn

hnyJn times the BDF (2 ) modifier polynomial of degree 2 at t . After

a great deal of algebra we determined the equivalent multistep formula

satisfied by the computed solution and derivative values:

{AMF - hnynJn{BDF(2)}

h 3

+ n (h_ 2 Yi hnYn JM + 3hn_2Yn_1an l)-1 )nl - 0

*(h +h-)hnl 2- -1 n-lnnn-n1n1U1

This is not a blend of AMF and BDF (2 ) even for constant J unless y

are chosen in a manner incompatible with good stability behavior.

t 2



72

References

F. Chipman (1979), "Some experiments with STRIDE," in Working Papers for
the 1979 SIGNUM Meeting on. Numerical Ordinary Differential
Equations, R. D. Skeel ed., UIUCDCS-R-79-963, Dept. of Computer
Science, Univ. of Illinois at Urbana-Champaign.

A. C. Hindmarsh (1974), "GEAR, Ordinary differential equation solver,"
UCID-3001, Rev. 3, Lawrence Livermore Lab, Univ. of California,
Livermore.

A. C. Hindmarsh (1978), "A tentative user interface standard for ODEPACK,"
UCID-17954, Lawrence Livermore Lab, Univ. of California,
Livermore.

L. F. Shampine and J. A. Wisniewski (1978), "The variable order Runge-Kutta
code RKSW and its performance," SAND78-1347,.Sandia Lab,
Albuquerque, New Mexico.

R. D. Skeel (1979), "Equivalent forms of multistep formulas," Math. Comp.
33, 148, 1229-1250.

R. D. Skeel and L. W. Jackson (198x), "The stability of variable-step
Nordsieck methods," SIAM J. Numer. Anal., to appear. (Also,
T.R. 89, Dept. of Computer Sci., Univ. of Toronto.)

R. D. Skeel and A. K. Kong (1977), "Blended linear multistep methods,"
ACM Trans. Math. Software 3, 4, 326-345.



73

IV. MULTIGRID METHODS (Van Rosendale; Skeel)

A Ph.D. thesis on this topic was written by Van Rosendale (1980).

The abstract follows:

This thesis is concerned with the use of multi-level methods
to solve the linear systems arising from finite element
discretizations of elliptic equations. In all, three multi-
level methods are considered. The first of these is
applicable only to quasi-uniform grids, but is simpler than
other algorithms considered in previous theoretical work.
The other two algorithms are applicable to both quasi-uniform
grids, and locally refined grids, those grids on which the
size of the largest and smallest elements may differ by an
arbitrarily large factor. All three algorithms are
asymptotically optimal, producing good solutions in 0(N)
operations on a finite element grid with N elements. These
asymptotically optimal complexity bounds for the last two
algorithms are the first such bounds for multi-level methods
on locally refined grids. One of these algorithms achieves
this 0(N) complexity bound under weaker than expected
conditions on the dimensions of the finite element spaces
used by the algorithm.

The multi-level convergence results for locally refined grids
shown here are based on a new approximation result given in
this thesis. This approximation result is of interest for
several reasons, the main one being that it is completely
local, making no use of global properties such as the
regularity of the problem. In consequence, it provides an
independent demonstration of the asymptotically optimal
complexity of multi-level algorithms on non-convex domains,
shown previously by Bank and Dupont. It also permits one
to determine explicit upper bounds on the rate of convergence
of multi-level methods on irregular finite element grids
using only local properties of the finite element space involved.

The table of contents is as follows:

1. Introduction
1.1. Scope of Thesis
1.2. History of Multi-Level Methods
1.3. The Finite Element Approach

2. Preliminaries
2.1. Elliptic Equations
2.2. Finite Element Spaces
2.3. Linear Equations

3. Quasi-Uniform Grids
3.1. Introduction
3.2. L2 Convergence
3.3. Computational Cost
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4. Locally Refined Grids
4.1. Introduction
4.2. Notation
4.3. Algorithms
4.4. Complexity
4.5. Interpolation
4.6. Approximation

Reference

J. R. Van Rosendale (1980)-, "Rapid solution of finite element equations
on locally refined grids by multi-level methods," UIUCDCS-R-
80-1021, Dept. of Computer Sci., Univ. of Illinois at
Urbana-Champaign.

4,
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